
 

 

2.2.4.1. Verification of sensing requirements 

Practical guidance – cross-domain and maritime 

Authors: ALADDIN demonstrator project 

Background 

Sensing the RAS’s state and its operating environment is crucial for its safe operation and is 
fundamental for the other elements in the RAS architecture. However, anomalies can 
develop during the RAS’s operations, either due to the RAS’s internal faults or external 
factors in its operating environment. Therefore, it is critical to embed autonomous systems 
that can correctly sense the anomalies so that mitigation actions can be in place with an 
updated maintenance schedule to minimise the safety hazards to the RAS and its operating 
environment. Regulations for condition monitoring systems can be found in the ISO 
standards 13372:2012 [2] and 26262-1:2018 [3] for machines and road vehicles, 
respectively. The data collection and management specification for automated vehicle trials 
can be found from [4]. 

This Body of Knowledge entry details the verification of the sensing requirements defined in 
Section ref1. The verification is implemented through a field test (the FRONTIERS project) 
using an underwater glider deployed for 19 days in Mallorca, Spain, July 2021, to test the 
data-driven anomaly detection method developed in [1]. The developed and tested anomaly 
detection method is demonstrated through the application to underwater gliders (i.e. a 
Marine Autonomous System (MAS)). However, the method can be adapted and transferred 
to any other RAS for its generality. 

Stage input and output artefacts 

Required input/existing knowledge 

• List of all sensors on the RAS – the list should clearly label any redundant sensors on 
over-observed systems 

• Signal output from all sensors, including both readings and the associated time 
stamps, synced for the RAS 

• Knowledge of the dynamics of the RAS (desirable, especially for under-observed 
systems) 

• Failure Mode Effect Analysis (FMEA) for the RAS (desirable), which can be completed 
according to the IEC 60812:2018 standards [5] 

• Hazard and Operability study (HAZOP) for the RAS (desirable), which can be 
completed according to the IEC 61882:2016 standards [6] 

• Formal description of the baseline RAS behaviour 

• Metadata (e.g. calibration, system configuration, deployment reports or operator 
logs) to enable understanding of wider context 

                                                      
1 https://www.york.ac.uk/assuring-autonomy/guidance/body-of-knowledge/implementation/2-2/2-
2-1/2-2-1-1/cross-domain-maritime/ 
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• Training and validation datasets for baseline RAS behaviour – data from multiple RAS 
covering a wide range of normal missions would be ideal 

• Testing datasets (including datasets collected previously and the datasets to be 
collected by the scheduled field tests) for anomalous RAS behaviour – data of a wide 
range of anomalies would be ideal 

Assumptions 

• Sensing requirements, as defined in ref2, are met (i.e. the installed sensors are 
appropriate for the RAS) 

• The training, validation and testing datasets are collected by similar systems 

• The incoming volume of data is manageable in real-time with the installed 
processing power 

Expected outputs 

• The system able to autonomously detect anomalies and inform the operator 
accordingly. 

Stage input and output artefacts 

 

Figure 1: Summary procedure to verify sensing requirements. 

1. Data cleaning: the data applied for the training, validation and test datasets, as well 
as the RAS real-time implementation data need to be cleaned through the following 
steps 

a. Signal processing and data treatment according to the data collection and 
management specification for automated vehicle trials [4] 

b. Feature engineering: 
i. Design additional virtual signals derived from dynamic models to 

better present the RAS’s operating status and its environment 
ii. Data fusion to combine the virtual and actual signals 

c. Depending on the type of RAS and characteristics of the data, some 
application may need filtering of transient effects and measurement noise to 
reduce the computational cost and improve real-time performance 

i. In the case of Unmanned Aerial Vehicles, reserving full dynamic 
effects can be important 

ii. In the case for underwater gliders, the RAS can spend significant time 
in steady-state operations. Reducing/removing transient effects can 
beneficial 

                                                      
2 https://www.york.ac.uk/assuring-autonomy/guidance/body-of-knowledge/implementation/2-2/2-
2-1/2-2-1-1/cross-domain-maritime/ 
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2. Dataset creation: creation of suitable datasets for the development of the anomaly 
detection system. Data augmentation (see Section 2.3.1) is required in many 
applications to achieve desired testing/deployment performance of the model 

a. Training dataset 
b. Validation dataset for hyperparameter selection and training 
c. Test dataset: 

i. Previous deployment data has not been seen by the model during 
training 

3. Development: the anomaly detection method is developed as described in [1] 
4. Training: the anomaly detection system is trained using the previously prepared 

training dataset. Different signals can be selected as input during this stage to assess 
improvements in performance (prediction accuracy and computational cost) 

5. Validation: the hyperparameters of the network, e.g. size of the Deep Neural 
Networks (DNNs), are selected with a sensitivity analysis to improve prediction 
accuracy and computational cost and prevent overfitting on the validation dataset 

6. Test: the ability of the anomaly detection system in correctly identifying and 
labelling baseline and anomalous behaviour is assessed for the test datasets. In 
particular, sensing deviations are quantified and visualised (see an example in Figure 
2) 

7. Sensitivity analysis: handling large quantities of data in real-time is challenging or 
there can be constraints associated with data transmission (e.g. if undertaken by 
satellite). Therefore, the data needs to be decimated, i.e. collected at larger time 
steps, during actual deployment. The sensitivity analysis on the data decimation 
settings indicates whether the proposed anomaly detection system is insensitive to 
the selected sample time in the data decimation 

8. Deployment: the anomaly detection system’s architecture is updated to enable its 
real-time deployment for the RAS operations 

 

 

 

Figure 2: Example of anomaly detection results of underwater gliders on the test datasets: 
(a) unit 194 which experienced angle of list (internal anomaly) in 2017, and (b) unit 345 
which had encountered strong environmental disturbances (external anomaly) in 2019 
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Method  

Figure 3 shows the structure of the BiGAN, which includes an additional encoder E that 
maps data x to its latent representations z. A trained BiGAN encoder can serve as a useful 
feature representation for related semantic tasks (i.e. the latent representation z can be 
regarded as a representation of data x). Unlike the standard GAN, the discriminator D of the 
BiGAN discriminates (x, E(x)) and (G(z), z), where G is the generator. Additionally, we add 
assistive hints to guide the BiGAN training. Two features (i.e. the reconstruction error and 
the discriminator D feature) jointly represent the anomaly score that indicates the degree of 
an anomaly [1]. A higher anomaly score suggests significant deviations from normal 
operating characteristics. 

 

Figure 3: Structure of the BiGAN (Donahue et al., 2016) 

Figure 4 illustrates the data processing process preparing the training and validation 
datasets, using the healthy deployment data. To monitor and check the performance of the 

anomaly detection system performance during training, synthetic sensor anomalies are 
injected into the data patches by setting a number of sensor measurements to their 

minimum values. Note that the sensors with anomalies are randomly chosen for each 
validation data patch. For the test datasets, a similar data processing flow has been 

followed. 

 

Figure 4: Data processing procedure applied to prepare the training and validation datasets 
using healthy deployment data. 
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Results 

As shown in Figure 5A, the test started at t0 (Figure 5B-a) and ended at t8 (Figure 5B-b). The 
anomaly detection system based upon Bidirectional Generative Adversarial Networks 
(BiGAN) has successfully output anomaly scores over the test. The pitch angles for t0-t1, t1-t2, 
and t2-t3 were set as 30°, 18°, and 26°, respectively. The glider’s starboard wing was 
removed at t3 (see Figure 5B-c). At t4, the starboard wing was restored while the port wing 
was removed (see Figure 5B-d). At t5, the port wing was restored while the balancing weight 
setting in the wing rails was adjusted from left-2 & right-5 to left-5 & right-2 (each pill is 15.5 
g) (see the vehicle status in Figure 5B-e). At t6, the wrong battery position was applied. At t7, 
the battery position servo mode was set, and the balancing weight setting was changed to 
left-0 & right-3 (2 extra pills removed along the length of the vehicle in each wing rail, see 
Figure 5B-f). The glider was recovered at t8. 
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Figure 5: (A) anomaly scores over the FRONTIERS test in Mallorca, Spain, July 2021. (B) a: the 
glider at the beginning of the test, b: the glider before recovery at the end of the test, c: the 

glider with its starboard wing removed, d: the glider with its port wing removed, e:  
incorrectly ballasted glider, f: the balancing weight setting for the simulated trimming fault. 

A data-driven anomaly detection system based on a BiGAN architecture with added hints 
was trained with data from deployments from the British Oceanographic Data Centre and 
the SOCIB portal. The system uses the decimated semi-real-time data signals from each dive 
of the glider sent ashore to calculate an anomaly score that can be used to determine 
whether anomalies are present on board the vehicle. Once trained, the system was 
validated using the data stream from the JERICO deployment. As can be seen in Figure 5A, 
as the 30° and 18° pitch settings were not included in the training dataset, high anomaly 
scores have been incorrectly returned at the start of the deployment for normal behaviour. 
However, the system was able to clearly detect the loss of wing, as removing the starboard 
and port wings resulted in high anomaly scores of similar magnitudes. Additionally, 
relatively high anomaly scores can be observed from t5 to t8 for the incorrect ballasting and 
trimming. In conclusion, the simulated faults were correctly detected, validating the 
proposed anomaly detection solution. The false positive at the start of the deployment 
suggest that the training data needs broadly capture the normal operating patterns of the 
RAS. 
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Advantages of the approach 

• The applied approach is generic and is designed with an expandable architecture and 
can be extended to any RAS. 

• Anything differs from the normal pattern can be detected.  

Limitations of the approach 

• The training dataset needs to broadly capture the normal pattern of the RAS 
operating state and the operating environment, states that vary from the pattern 
existing in the training dataset will be sensed as anomaly. False positive anomaly 
detection results may be provided if the training dataset is not sufficient. 

• Training and validation require significant computational resources and time.  

• A pre-trained anomaly detection model requires the same sensor/feature list in 
deployment 
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